Studies of short-wavelength collective molecular motions in lipid bilayers using high resolution inelastic X-ray scattering.

نویسندگان

  • Poe-Jou Chen
  • Yun Liu
  • Thomas M Weiss
  • Huey W Huang
  • Harald Sinn
  • Ercan E Alp
  • Ahmet Alatas
  • Ayman Said
  • Sow-Hsin Chen
چکیده

We summarize a series of experimental results made with the newly developed high resolution X-ray scattering (IXS) instrument on two pure lipid bilayers, including dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) in both gel and liquid crystal phases, and lipid bilayers containing cholesterol. By analyzing the IXS data based on the generalized three effective eigenmode model (GTEE), we obtain dispersion relations of the high frequency density oscillations (phonons) of lipid molecules in these bilayers. We then compare the dispersion relations of pure lipid bilayers of different chain lengths among themselves and the dispersion relations of pure lipid bilayers with those of the cholesterol containing bilayers. We also compare our experimental results with collective dynamics data generated by computer molecular dynamics (MD) simulations for dipalmitoylphosphatidylcholine (DPPC) in gel phase and DMPC in liquid crystal phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic x-ray scattering.

The short wavelength density fluctuation of DLPC (dilaurylphosphatidylcholine) bilayers close to full hydration has been studied by the inelastic x-ray scattering technique below and above the main transition temperature. The analysis based on a generalized three effective eigenmode theory allows us to construct the dispersion relation of the high frequency sound mode for the first time. The ma...

متن کامل

Short-range order and collective dynamics of DMPC bilayers: a comparison between molecular dynamics simulations, X-ray, and neutron scattering experiments.

We present an extensive comparison of short-range order and short wavelength dynamics of a hydrated phospholipid bilayer derived by molecular dynamics simulations, elastic x-ray, and inelastic neutron scattering experiments. The quantities that are compared between simulation and experiment include static and dynamic structure factors, reciprocal space mappings, and electron density profiles. W...

متن کامل

Collective dynamics in phospholipid bilayers investigated by inelastic neutron scattering: Exploring the dynamics of biological membranes with neutrons

We present the first inelastic neutron scattering study of the short wavelength dynamics in a phospholipid bilayer. We show that inelastic neutron scattering using a triple-axis spectrometer at the high flux reactor of the ILL yields the necessary resolution and signal to determine the dynamics of model membranes. The results can quantitatively be compared to recent Molecular Dynamics simulatio...

متن کامل

Collective chain dynamics in lipid bilayers by inelastic x-ray scattering.

We investigated the application of inelastic x-ray scattering (IXS) to lipid bilayers. This technique directly measures the dynamic structure factor S(q,omega) which is the space-time Fourier transform of the electron density correlation function of the measured system. For a multiatomic system, the analysis of S(q,omega) is usually complicated. But for multiple bilayers of lipid, S(q,omega) is...

متن کامل

Erratum: Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations

The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical chemistry

دوره 105 2-3  شماره 

صفحات  -

تاریخ انتشار 2003